Подпишись и читай
самые интересные
статьи первым!

Строение клетки митохондрии. Что такое митохондрии? Их строение и функции. Что мы узнали

О СЛОЖНОМ ПРОСТЫМ ЯЗЫКОМ.

Тема эта сложная и комплексная, затрагивающая сразу же огромное количество биохимических процессов происходящих в нашем организме. Но давайте все таки попробуем разобраться, что же такое митохондрии и как они работают.

И так, митохондрии это одна из самых важных составляющих живой клетки. Если говорить простым языком то можно сказать, что это энергетическая станция клетки . Их деятельность основана на окисление органических соединений и генерации электрического потенциала (энергии освободившейся при распаде молекулы АТФ) для осуществления мышечного сокращения.

Все мы знаем, что работа нашего организма происходит в строгом соответствии с первым законом термодинамики. Энергия не создается в нашем организме, а лишь превращается. Организм только выбирает форму трансформации энергии, не производя ее, от химической к механической и тепловой. Основным источником всей энергии на планете Земля является Солнце. Приходя к нам в форме света, энергия поглощается хлорофиллом растений, там она возбуждает электрон атома водорода и таким образом дает энергию живой материи.

Своей жизнью мы обязаны энергии маленького электрона.

Работа митохондрии заключается в ступенчатом переносе энергии электрона водорода между атомами металлов, присутствующих в группах белковых комплексов дыхательной цепи (электронно-транспортной цепи белков), где каждый последующий комплекс обладает более высоким сродством к электрону притягивая его, чем предыдущий, до тех пор, пока электрон не соединиться с молекулярным кислородом, обладающим наибольшим сродством к электрону.

Каждый раз при передачи электрона по цепи высвобождается энергия которая аккумулируется в виде электрохимического градиента и затем реализовывается в виде мышечного сокращения и выделения тепла.

Серия окислительных процессов в митохондрии позволяющая перенести энергетический потенциал электрона называется «внутриклеточным дыханием» или часто «дыхательной цепью» , так как электрон по цепочки передается от атома к атому до тех пор пока не достигнет своей конечной цели атома кислорода.

Митохондриям нужен кислород для переноса энергии в процессе окисления.

Митохондрии потребляют до 80% кислорода который мы вдыхаем.

Митохондрия представляет из себя постоянную структуру клетки, расположенную в ее цитоплазме. Размер митохондрии обычно составляет от 0,5 до 1 мкм в диаметре. По форме она имеет зернистую структуру и может занимать до 20% объема клетки. Такая постоянная органическая структура клетки называется органелла . К органеллам относятся и миофибриллы – сократительные единицы мышечной клетки; и ядро клетки это тоже органелла. Вообще, любая постоянная структура клетки является органоидом-органеллой.

Открыл митохондрии и впервые описал немецкий анатом и гистолог Рихард Альтман в 1894 году, а название этой органелле дал другой немецкий гистолог К. Бенд в 1897 году. Но только в 1920 году, опять же немецкий биохимик Отто Вагбург, доказал, что с митохондриями связаны процессы клеточного дыхания.

Существует теория, согласно которой митохондрии появились в результате захвата примитивными клетками, клетками которые сами не могли использовать кислород для генерации энергии, бактерий протогенотов, которые могли это делать. Именно потому, что митохондрия ранее представляла из себя отдельный живой организм она и по сей день обладает собственным ДНК.

Митохондрии ранее представляли из себя самостоятельный живой организм.

В ходе эволюции прогеноты предали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру и перестали быть самостоятельными организмами. Митохондрии присутствуют во всех клетках. Даже в сперматозоиде есть митохондрии. Именно благодаря им приводится в движение хвостик сперматозоида осуществляющий его движение. Но особенно много митахондрий в тех местах, где необходима энергия для любых жизненных процессов. И это конечно прежде всего мышечные клетки.

В мышечных клетках митохондрии могут объединяться в группы гигантских разветвленных митохондрий, связанных друг с другом с помощью межмитохондриальных контактов, в которых они создают согласованную работающую кооперативную систему . Пространство в такой зоне имеет повышенную электронную плотность. Новые митохондрии образуются путем простого деления предыдущих органелл. Наиболее «простой» и доступный всем клеткам механизм энергетического обеспечения чаще всего называют общим понятием гликолиз .

Это процесс последовательного разложения глюкозы до пировиноградной кислоты. Если этот процесс происходит без участия молекулярного кислорода или с недостаточным его присутствием, то он называется анаэробный гликолиз . При этом глюкоза расщепляется не до конечных продуктов, а до молочной и пировиноградной кислоты которая далее претерпевает дальнейшие превращения в ходе брожения. Поэтому высвобождающейся энергии бывает меньше, но и скорость получения энергии быстрее. В результате анаэробного гликолиза из одной молекулы глюкозы клетка получает 2 молекулы АТФ и 2 молекулы молочной кислоты. Такой «базовый» энергетический процесс может протекать внутри любой клетки без участия митохондрий .

В присутствии молекулярного кислорода внутри митохондрий осуществляется аэробный гликолиз в рамках «дыхательной цепи». Пировиноградная кислота в аэробных условиях вовлекается в цикл трикарбоновых кислот или цикл Кребса . В результате этого многостадийного процесса из одной молекулы глюкозы образуется 36 молекул АТФ. Сравнение энергетического баланса клетки, имеющей развитые митохондрии и клетки, где они не развиты показывает (при достаточном количестве кислорода) различие в полноте использования энергии глюкозы внутри клетки почти в 20 раз!

У человека, волокна скелетных мышц можно условно разделить на три типа исходя из механических и метаболических свойств: - медленные окислительные; - быстрые гликолитические; - быстрые окислительно-гликолитические.


Быстрые мышечные волокна предназначены для выполнения быстрой и тяжелой работы. Для своего сокращения они используют в основном быстрые источники энергии, а именно криатинфосфот и анаэробный гликолиз. Содержание митохондрий в таких типах волокон значительно меньше чем в медленных мышечных волокнах.

Медленные мышечные волокна выполняют медленные сокращения, но способны работать длительное время. В качестве энергии они используют аэробный гликолиз и синтез энергии из жиров. Это дает гораздо больше энергии чем анаэробный гликолиз, но требует в замен больше времени, так как цепочка деградации глюкозы более сложная и требует присутствия кислорода, транспортировка которого к месту преобразования энергии тоже занимает время. Медленные мышечные волокна называют красными из-за миоглобина – белка, ответственный за доставку кислорода внутрь волокна. Медленные мышечные волокна содержат значительное количество митохондрий.

Возникает вопрос, каким образом и с помощью каких упражнений можно развить в мышечных клетках разветвленную сеть митохондрий? Существуют различные теории и методики тренировок и о них в материале по .

Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством.Митохондрия - это единственный источник энергии клеток. Расположенные в цитоплазме каждой клетки, митохондрии сравнимы с «батарейками», которые производят, хранят и распределяют необходимую для клетки энергию.

Человеческие клетки содержат в среднем 1500 митохондрий.Их особенно много в клетках с интенсивным метаболизмом (например, в мускулах или печени).

Митохондрии подвижны и перемещаются в цитоплазме в зависимости от потребностей клетки. Благодаря наличию собственной ДНК они размножаются и самоуничтожаются независимо от деления клетки.

Клетки не могут функционировать без митохондрий, без них жизнь не возможна.

Различный типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа. Митохондрии - изменчивые и пластичные органеллы.

Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входят порины, которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа. Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О2, СО2, Н20. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчики), ферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится необычный фосфолипид кардиолипин. Матрикс также обогащен белками, особенно ферментами цитратного цикла.Митохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). Митохондрия состоит из наружной мембраны, которая является ее оболочкой и внутренней мембраны, места энергетических преобразований. Внутренняя мембрана образует многочисленные складки, способствующие интенсивной деятельности по преобразованию энергии.

Специфическая ДНК:Самая примечательная особенность митохондрий - это наличие у них своей собственной ДНК: митохондриальной ДНК. Независимо от ядерной ДНК, каждая митохондрия имеет свой собственный генетический аппарат.Как и следует ожидать исходя из ее названия, митохондриальная ДНК (мтДНК) находится внутри митохондрий, небольших образований, располагающихся в цитоплазме клетки, в отличие от ядерной ДНК, упакованной в хромосомы внутри ядра. Митохондрии имеются у большинства эукариот и имеют единое происхождение, как считается, от одной древней бактерии, когда-то на заре эволюции поглощенной клеткой и превратившейся в ее составную часть, которой были "поручены" очень важные функции. Митохондрии часто называют "энергетическими станциями" клеток по той причине, что внутри них вырабатывается аденозинтрифосфорная кислота (АТФ), химическую энергию которой клетка может расходовать практически везде, подобно тому как человек использует в своих целях энергию топлива или электричества. И точно так же, производство топлива и электричества требует немалых затрат человеческого труда и слаженной работы большого количества специалистов, получение АТФ внутри митохондрии (или "клеточное дыхание", как его называют) использует огромную массу клеточных ресурсов, включая "топливо" в виде кислорода и некоторых органических веществ, и конечно предполагает участие в этом процессе сотен белков, каждый из которых выполняет свои специфические функции.

Назвать этот процесс просто "сложным" будет наверное мало, потому что прямо или косвенно он связан с большинством других процессов обмена веществ в клетке, за счет того, что эволюция наделила каждый "винтик" данного механизма множеством дополнительных функций. Основной принцип заключается в создании условий, когда внутри митохондриальной мембраны становится возможным присоединение еще одного фосфата к молекуле АДФ, что "энергетически" нереально в обычных условиях. И наоборот, последующее использование АТФ заключается в возможности разрыва этой связи с освобождением энергии, которую клетка может использовать в своих многочисленных целях. Строение митохондриальной мембраны очень сложное, включает большое количество белков различного вида, которые объединяются в комплексы, или как говорят, "молекулярные машины", выполняющие строго определенные функции. Биохимические процессы, протекающие внутри митохондриальной мембраны (трикарбоновый цикл и др.), на входе принимают глюкозу, в числе продуктов выхода дают углекислый газ и молекулы НАДН, способные отщеплять атом водорода, передавая его белкам мембраны. При этом протон переносятся на наружную сторону мембраны, а электрон в конечном счете забирает молекула кислорода на внутренней стороне. Когда разница потенциалов достигает определенной величины, протоны начинают двигаться внутрь клетки через специальные белковые комплексы, и соединяясь с молекулами кислорода (уже получившими электрон), образуют воду, а энергия движущихся протонов используется при образовании АТФ. Таким образом, на вход всего процесса поступают углеводы (глюкоза) и кислород, а выходом являются углекислота, вода и запас "клеточного топлива" - АТФ, которое может транспортироваться в другие части клетки.

Как уже упоминалось выше, все эти функции митохондрия унаследовала от своего предка - аэробной бактерии. Поскольку бактерия является самостоятельным одноклеточным организмом, внутри ее имеется молекула ДНК, в которой записаны последовательности, определяющие строение всех белков данного организма, то есть, прямо или косвенно - все функции, им выполняемые. Когда бактерия-протомитохондрия и древняя эукариотическая клетка (по происхождению - тоже бактерия) слились, новый организм получил две различающиеся молекулы ДНК - ядерную и митохондриальную, которые, по-видимому, поначалу кодировали два совершенно самостоятельных жизненных цикла. Однако внутри новой единой клетки такое обилие обменных процессов оказалось ненужным, так как они во многом дублировали друг друга. Постепенное взаимное приспособление двух систем привело к замещению большинства белков митохондрии собственными белками эукариотической клетки, способными выполнять аналогичные функции. В результате участки кода митохондриальной ДНК, прежде выполнявшие определенные функции, переходили в разряд некодирующих и со временем терялись, приводя к сокращению молекулы. Благодаря тому, что некоторые формы жизни, например грибы, имеют весьма длинные (и полностью функционирующие!) цепочки митохондриальной ДНК, мы можем судить об истории упрощения этой молекулы достаточно достоверно, наблюдая, как в течение миллионов лет в разных ответвлениях Древа Жизни терялись те или иные ее функции. Современные хордовые, в том числе млекопитающие, имеют мтДНК длиной от 15000 до 20000 нуклеотидов, оставшиеся гены которой расположены очень плотно друг к другу. Лишь немногим более 10 белков и всего два типа структурной РНК кодируется в самой митохондрии, все остальное, что требуется для клеточного дыхания (это более 500 белков) предоставляется ядром. Единственная, пожалуй, сохранившаяся целиком подсистема - это транспортные РНК, гены которых до сих пор лежат в митохондриальной ДНК. Транспортные РНК, в состав каждой из которых входит трехнуклеотидная последовательность, служат для синтеза белков, одной стороной "читая" трехбуквенный кодон, задающий будущий белок, а другой присоединяя строго определенную аминокислоту; само соответствие между трехнуклеотидными последовательностями и аминокислотами называется "таблицей трансляции" или "генетическим кодом". Транспортные РНК митохондрий участвуют только в синтезе митохондриальных белков и не могут использоваться ядром, потому что между ядерным и митохондриальным кодами за миллионы лет эволюции накопились небольшие различия.

Также упомянем, что существенно упростилась сама структура митохондриальной ДНК, так как многие составные части процесса транскрипции (чтения) ДНК были утеряны, вследствие чего исчезла необходимость в особом структурировании митохондриального кода. Белки-полимеразы, осуществляющие транскрипцию (чтение) и репликацию (удвоение) митохондриальной ДНК, кодируются не в ней самой, а в ядре.

Главной и непосредственной причиной разнообразия форм жизни являются мутации кода ДНК, то есть замены одного нуклеотида другим, вставки нуклеотидов и их удаления. Как и мутации ядерной ДНК, мутации мтДНК в основном происходят при размножении молекулы - репликации. Однако циклы деления митохондрий независимы от делений клетки, в связи с чем мутации в мтДНК могут возникать независимо от клеточных делений. В частности, между мтДНК, находящимися в разных митохондриях внутри одной клетки могут быть некоторые минорные различия, равно как и между митохондриями в разных клетках и тканях одного организма. Это явление называется гетероплазмией. В ядерной ДНК точного аналога гетероплазмии нет: организм развивается из единственной клетки, содержащей единственное ядро, где весь геном представлен одной копией. В дальнейшем в течение жизни индивида различные ткани могут накапливать т.н. соматические мутации, но при этом все копии генома в конечном счете происходят от одной. Ситуация с митохондриальным геномом несколько иная: зрелая яйцеклетка содержит сотни тысяч митохондрий, которые, делясь, могут быстро накапливать небольшие различия, причем весь набор вариантов передается по наследству новому организму после оплодотворения. Таким образом, если несовпадения между вариантами ядерной ДНК различных тканей вызваны только соматическими (прижизненными) мутациями, то различия митохондриальных ДНК - как соматическими, так и герминальными (зародышевыми) мутациями.

Еще одним отличием является то, что молекула митохондриальной ДНК - кольцевая, в то время ядерная ДНК упакована в хромосомы, которые можно (с некоторой степенью условности) рассматривать как линейные последовательности нуклеотидов.

Наконец, последней особенностью митохондриальной ДНК, которую мы упомянем в данном вводном разделе, является ее неспособность к рекомбинации. Иными словами, между различными эволюционными вариантами митохондриальной ДНК одного вида невозможен обмен гомологичными (т.е. сходными) участками, и поэтому вся молекула изменяется только путем медленного мутирования в течение тысячелетий. У всех хордовых животных митохондрии наследуются только от матери, поэтому эволюционное древо митохондриальной ДНК соответствует генеалогии по прямой женской линии. Однако данная особенность не является уникальной, в различных эволюционных семействах те или иные ядерные хромосомы также не подвержены рекомбинации (не имея пар) и наследуются только от одного из родителей. Так. например, Y-хромосома у млекопитающих может быть передана только от отца к сыну. Митохондриальная ДНК наследуется только по материнской линии и передается из поколения в поколение исключительно женщинами Эта особая форма наследственности митохондриального генома позволила создать родословное древо разных человеческих этносов, определив местонахождение наших общих предков в Эфиопии около 200 000 лет назад.Обладая необыкновенными способностями к адаптации, при увеличении потребности в энергии митохондрии также способны размножаться независимо от клеточного деления. Это явление возможно благодаря митохондриальной ДНК.Митохондриальная ДНК передается исключительно женщинами Митохондриальная ДНК не наследуется по законам Менделя, а по законам цитоплазматического наследования. Во время оплодотворения проникающий в яйцеклетку сперматозоид теряет жгутик, в котором находятся все митохондрии. Зародышу передаются только митохондрии, содержащиеся в яйцеклетке матери. Таким образом, клетки наследуют их единственный источник энергии из материнских митохондрий.Митохондрия: энергетическая станция клеткиУникальный источник энергии.В обычной жизни существуют различные способы извлечения энергии и использования ее для бытовых нужд: солнечные батареи, атомные электростанции, ветроэлектростанции... У клетки есть только одно решение для извлечения, преобразования и хранения энергии: митохондрия. Только митохондрия может преобразовать различные виды энергии в АТФ, энергию, используемую клеткой.
Процесс преобразования клеточной энергииМитохондрии используют 80% кислорода, который мы вдыхаем, чтобы преобразовывать потенциальную энергию в энергию, используемую клеткой. В процессе окисления освобождается большое количество энергии, которая сохраняется митохондриями в виде молекул АТФ.

В день преобразовывается 40 кг. АТФ.Энергия в клетке может принимать различные формы. Принцип действия клеточного механизма – преобразование потенциальной энергии в энергию, которую может напрямую использовать клетка.Потенциальные виды энергии попадают в клетку через питание в виде углеводов, жиров и белковКлеточная энергия состоит из молекулы называемой АТФ: Аденозинтрифосфат. Она синтезируется в результате преобразования углеводов, жиров и белков внутри митохондрии.За день в организме взрослого человека синтезируется и распадается эквивалент 40 кг АТФ.В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл; дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем;-окисления и частично цикл мочевины. Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л).

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО2) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе. Ферменты дыхательной цепи, которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН2. Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н+) через внутреннюю мембрану из матрикса в межмембранное пространство. В результате на внутренней мембране создается электрохимический градиент В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ (ADP) и неорганического фосфата (Рi) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем
215).http://www.chem.msu.su/rus/teaching/kolman/212.htm

Наличие своего собственного ДНК в митохондриях открывает новые пути в исследованиях проблемы старения, которое возможно связано с устойчивостью митохондрий. К тому же мутация митохондриальной ДНК при известных дегенеративных болезнях (Альцгеймер, Паркинсон...) наводит на мысль, что они могут играть особую роль в этих процессах.Из-за постоянного последовательного деления митохондрий, направленного на производство энергии, их ДНК «снашивается». Истощается запас митохондрий в хорошей форме, уменьшая единственный источник клеточной энергии.Митохондриальная ДНК в 10 раз чувствительнее к действию свободных радикалов, чем ядерная. Мутации, вызванные свободными радикалами, ведут к дисфункции митохондрий. Но по сравнению с клеточной система самовосстановления митохондриальной ДНК очень слабая. Когда повреждения митохондрий значительны, они самоуничтожаются. Этот процесс называется «аутофагией».

В 2000 году было доказано, что митохондрии ускоряют процесс фотостарения. На участкахкожи, регулярно подвергающихся воздействию солнечных лучей, уровень мутаций ДНК значительно выше, чем на защищенных участках.Сравнение результатов биопсии (взятие образцов кожи для анализа) участка кожи, подвергшегося воздействию ультрафиолетовых лучей, и защищенного участка показывает, что мутации митохондрий под воздействием УФ-излучения вызывают хронический окислительный стресс.Клетки и митохондрии навсегда связаны между собой: энергия, поставляемая митохондриями, необходима для деятельности клеток. Поддерживать деятельность митохондрий необходимо для лучшей клеточной деятельности и для улучшения качества кожи, особенно кожи лица, слишком часто подвергающейся воздействию УФ-лучей.

Заключение:

Поврежденная митохондриальная ДНК за несколько месяцев порождает более 30 подобных себе митохондрий, т.е. с теми же повреждениями.

Ослабленные митохондрии вызывают у «хозяйских клеток» состояние энергетического голодания, как следствие - нарушение клеточного метаболизма.

Восстановление функций метахондрия и ограничение процессов приводящих к старению возможно при применении коэнзима Q10. В результате проведенных экспериментов было установлено замедление процессов старения и увеличение продолжительности жизни у некоторых многоклеточных организмов в результате введения добавок CoQ10.

Q10 (CoQ10) - это «свеча зажигания» человеческого организма: так же, как автомобиль не может работать без пусковой искры, организм человека не может обойтись без CoQ10. Это самый важный компонент митохондрий, вырабатывающий энергию, которая нужна клеткам для деления, перемещения, сокращения и выполнения всех прочих функций. CoQ10 также играет важную роль в выработке аденозинтрифосфата (АТФ) - энергии, которая приводит в движение все процессы в организме. Более того, CoQ10 - это очень важный антиоксидант, который защищает клетки от повреждений.

Хотя наш организм может вырабатывать CoQ10, он не всегда производит его в достаточном количестве. Поскольку мозг и сердце входят в число самых активных тканей организма, дефицит CoQ10 негативно влияет на них в наибольшей степени и может привести к серьезным проблемам с этими органами. Дефицит CoQ10 могут вызвать различные причины, в том числе плохое питание, генетические или приобретенные дефекты и, к примеру, повышенная тканевая потребность. Сердечно-сосудистые заболевания, включая высокие уровни холестерина и повышенное артериальное давление, также требуют увеличения уровня CoQ10 в тканях. Кроме того, поскольку уровни CoQ10 снижаются с возрастом, людям старше 50 лет может потребоваться больше этого вещества. Многие исследования показали, что ряд лекарственных препаратов (прежде всего гиполипидемические лекарственные средства, такие как статины) снижают уровень CoQ10.

Учитывая ключевую роль CoQ10 в митохондриальной функции и защите клеток, этот кофермент может быть полезен при наличии целого ряда проблем со здоровьем. CoQ10 может принести пользу при наличии такого широкого перечня болезней, что нет никаких сомнений в его важности как питательного вещества. CoQ10 является не только антиоксидантом общего действия, но и может помочь при наличии следующих заболеваний:

Сердечно-сосудистые заболевания: высокое кровяное давление, застойная сердечная недостаточность, кардиомиопатия, защита во время хирургических операций на сердце, высокий уровень холестерина, который лечат с помощью медикаментов, особенно статинов
Рак (для повышения иммунной функции и/или компенсации побочных эффектов химиотерапии)
Сахарный диабет
Мужское бесплодие
Болезнь Альцгеймера (профилактика)
Болезнь Паркинсона (профилактика и лечение)
Парадонтоз
Дегенерация желтого пятна

Исследования на животных и людях подтвердили полезность CoQ10 при всех вышеуказанных заболеваниях, особенно сердечно-сосудистых. В самом деле, исследования показали, что 50–75 процентов людей с различными заболеваниями сердечно-сосудистой системы страдают от дефицита CoQ10 в сердечных тканях. Устранение этого недостатка часто может приводить к драматическим результатам у пациентов с какой-либо болезнью сердца. Например, было доказано, что дефицит CoQ10 имеет место у 39 процентов пациентов с высоким артериальным давлением. Только этот вывод обуславливает необходимость приема добавок с CoQ10. Однако, как представляется, преимущества CoQ10 не ограничиваются устранением сердечно-сосудистой недостаточности.

Проведенное в 2009 году исследование, результаты которого были опубликованы в журнале Pharmacology & Therapeutics, дает основания предположить, что воздействие CoQ10 на артериальное давление становится заметным только через 4–12 недель после лечения и типичное снижение систолического и диастолического артериального давления у больных с высоким давлением является довольно скромным - в пределах 10 процентов.

Статиновые препараты, такие как Crestor, Lipitor, и Zocor, действуют путем ингибирования фермента, который необходим печени для выработки холестерина. К сожалению, они также блокируют выработку других веществ, необходимых для функционирования организма, в том числе CoQ10. Это может объяснить наиболее часто встречающиеся побочные эффекты данных препаратов, особенно усталость и мышечные боли. В одном крупном исследовании ENDOTACT, итоги которого были опубликованы в International Journal of Cardiology в 2005 году, было продемонстрировано, что статиновая терапия значительно снижает уровень CoQ10 в плазме крови, но это снижение можно предотвратить с помощью приема добавки со 150 мг CoQ10. Кроме того, добавки с CoQ10 значительно улучшают функцию выстилки кровеносных сосудов, что является одной из ключевых целей при лечении и профилактике атеросклероза.

В двойных слепых исследованиях было продемонстрировано, что прием добавок с CoQ10 был весьма полезным для некоторых пациентов с болезнью Паркинсона. У всех пациентов в этих исследованиях были три основных симптома болезни Паркинсона - тремор, ригидность и замедление движения, и диагноз заболевания был поставлен им в течение последних пяти лет.

В 2005 году исследование, опубликованное в Archives of Neurology, также показало замедление снижения функциональности у пациентов с болезнью Паркинсона, которые принимали CoQ10. После первоначальной проверки и исходных анализов крови пациенты были разделены случайным образом на четыре группы. Три группы получали CoQ10 в разных дозах (300 мг, 600 мг и 1200 мг в день) в течение 16 месяцев, в то время как четвертая группа получала плацебо. Группа, которая принимала дозу 1200 мг, показала меньшее ухудшение психических и двигательные функций и способности осуществлять повседневные действия, такие как кормление или одевание себя. Наибольший эффект был отмечен в повседневной жизни. У групп, которые получали 300 мг и 600 мг в день, инвалидность развилась в меньшей степени, чем в группе плацебо, но и результаты у членов данных групп были менее кардинальными, чем у тех, кто получал самую высокую дозировку препарата. Эти результаты показывают, что благотворного влияния CoQ10 при болезни Паркинсона можно достичь при наиболее высоких дозах приема препарата. Ни у кого из пациентов не были отмечены какие-либо существенные побочные эффекты.

Кофермент Q10 является очень безопасным. Никогда не сообщалось о серьезных побочных эффектах даже при его длительном применении. Поскольку безопасность во время беременности и лактации не была подтверждена, CoQ10 не следует использоваться в эти периоды, если только врач не установит, что клинические результаты перевешивают риски. Я обычно рекомендую принимать от 100 до 200 мг CoQ10 в день. Для наилучшего усваивания мягких желатиновых капсул их следует принимать с едой. При более высоких уровнях дозировки лучше принимать препарат разделенными дозами, а не одной дозой (лучше по 200 мг три раза в день, чем сразу все 600 мг).

Полисомы. Синтез цитоплазматических белков

Рибосомы представляют собой мельчайшие органеллы, присутствующие в цитоплазме клетки. Несмотря на свои размеры, они являются сложными молекулярными ансамб­леями, состоящими из рибосомальной РНК (р-РНК) различной длины и рибосомальных белков . В цитоплазме рибосомы встречаются в виде 2-х форм:

1. В диссоциированном состоянии (две субъединицы: малая и большая), которое свидетельствует об их неактивном статусе;

2. В ассоциированном виде – это форма их активного статуса.

Большая субъединица образуется тремя молекулами РНК, имеет форму полушара с 3 выступами, взаимодействующие с «шипиками» малой субъединицы.

Малая субъединица содержит лишь одну молекулу РНК и выглядит в виде «шапочки» с шипиками, обращёнными в сторону большой субъединицы. Ассоциация субъединиц рибосомы – это взаимодействие рельефов их поверхностей.

Функции субъединиц:

1. Малая ответственна за связывание с матричной РНК;

2. Большая – за образование полипептидной цепи.

Полисомы – это группа рибосом (от 5 до 30) связанных нитью м-РНК с образованием функционального комплекса. На нём происходит синтез цитоплазматических белков, необходимых клетке для роста, развития органелл дифференцировки.

Этапы синтеза цитоплазматических белков:

1. Выход из ядра м-РНК;

2. Сборка рибосом;

3. Образование функциональной полисомы;

4. Синтез сигнального пептида;

5. Считывание последовательности аминокислот в составе пептида сигнал-распознающей частицы (СРЧ);

6. Завершение синтеза цитоплазматического белка на полисоме. См рис. 1

Рис. 1: Схема синтеза цитоплазматических белков

II. Митохондрии (строение и функции)

Митохондрии – это система энергообеспечения клетки. На светооптическом уровне их выявляют при окраске по Альтману, они выглядят в виде зёрнышек и нитей. В цитоплазме они распределены диффузно, а в специализированных клетках сосредоточенны в участках, где имеется наибольшая потребность в энергии.

Электронномикроскопический уровень организации митохондрии : в ней выделяют две мембраны: наружную и внутреннюю. См. рис. 2

Рис. 2: Схема строения митохондрии

Наружная мембрана – это мешок с относительно ровной поверхностью, она по химическому составу и свойствам близка к плазмолемме, отличается она более высокой проницаемостью и содержит ферменты метаболизма жирных кислот, фосфолипидов и липидов.

Функция:

1. Отграничение митохондрии в гиалоплазме;

2. Транспорт в митохондрию субстратов для клеточного дыхания.

Внутренняя мембрана – неровная, она формирует кристы в виде пластин (ламеллярные кристы) с увеличением площади её поверхности. Главным компонентом этой мембраны являются молекулы белков, относящиеся к ферментам дыхательной цепи, цитохромы.

На поверхности крист в некоторых клетках описывают грибовидные частицы (F 1 -частицы), в которых различают головку (9 нм) и ножку (3 нм). Считают, что именно здесь происходит синтез АТФ и АДФ.

Между наружной и внутренней мембранами образуется небольшое (около 15 – 20 нм) пространство, которое называют наружной камерой митохондрий. Внутренняя камера ограничена соответственно внутренней митохондриальной мембраной и содержит матрикс.

Матрикс митохондрий имеет гелеобразную фазу и отличается высоким содержанием белка. В нём встречаются митохондриальные гранулы – частицы диаметром 20 – 50 нм высокой электронной плотности, они содержат ионы Са 2+ и Mg 2+ . Матрикс митохондрий содержит также митохондриальные ДНК и рибосомы. На первых происходит синтез транспортных белков митохондриальных мембран и некоторых белков, участвующих в фосфолировании АДФ. ДНК здесь состоит из 37 генов и не содержит некодирующие последовательность нуклеотидов.

Функции митохондрий:

1. Обеспечение клетки энергией в виде АТФ;

2. Участие в синтезе стероидных гормонов;

3. Участие в синтезе нуклеиновых кислот;

4. Депонирование кальция.

  • Микроскопический анализ постоянного микропрепарата «Клетки эпителия кожи лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови человека»
  • Практическое занятие №2
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Практическое занятие №3
  • 3. Вопросы для самоподготовки по данной теме:
  • 7. Содержание занятия:
  • Эндоплазматическая сеть (эпс)
  • Рибосомы
  • Пластинчатый комплекс Гольджи
  • Микротрубочки
  • 2. Органоиды с защитной и пищеварительной функцией Лизосомы
  • Пероксисомы (микротельца)
  • 3. Органоиды, участвующие в энергообеспечении клетки
  • Митохондрии
  • 4. Органоиды, участвующие в делении и движении клеток
  • Клеточный центр
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа №1
  • Микроскопический анализ постоянного препарата «Комплекс Гольджи в клетках спинального ганглия»
  • Микроскопический анализ постоянного препарата «Клеточный центр в делящихся клетках лошадиной аскариды»
  • 3. Микроскопический анализ постоянного препарата «Митохондрии в клетках печени»
  • 4. Микроскопический анализ постоянного препарата «Лизосомы»
  • Практическая работа №1 Работа с электронными микрофотографиями:
  • 1. Рибосомы
  • 2. Гранулярная эндоплазматическая сеть
  • Цитоплазматические микротрубочки
  • Практическое занятие № 4
  • 7. Содержания занятия:
  • 7.1. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия. Митотическая активность в тканях и клетках
  • 7.3. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Митоз (непрямое деление) в клетках корешка лука
  • 2. Амитоз (прямое деление) в клетках печени мыши
  • Практическое занятие №5
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Решение задач
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7. Содержания занятия
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • Решение типовых и ситуационных задач
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 12
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Анализ родословных
  • 2. Близнецовый метод исследования генетики человека
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Дерматоглифический метод исследования генетики человека
  • 2. Цитогенетический метод в исследовании генетики человека
  • Изучение хромосомного набора
  • Экспресс-метод определения полового хроматина
  • 3. Проведение дактилоскопического анализа
  • Выводы: ___________________________________________________________
  • 4.Цитогенетический анализ кариотипа (по микрофотографиям метафазных пластинок).
  • 5.Экспресс-метод исследования х-полового хроматина в ядрах эпителия слизистой оболочки полости рта
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 14
  • 2. Учебные цели:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • Популяционно-статистический метод
  • 2. Биохимический метод
  • 3. Молекулярно-генетический метод
  • Полимеразная цепная реакция синтеза днк
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Применение закона Харди-Вайнберга для расчета частот генотипов, аллелей и характеристики генетической структуры популяции (группы), используя тест на праворукость и леворукость
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые и ожидаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Молекулярно-генетический метод: моделирование пцр-анализа делеции f508 гена cftr при диагностике муковисцидоза
  • 5’ Act gcg agc t 3’
  • 3’A ccc gct cta 5’
  • 8. Задание для самостоятельной работы студентов.
  • 7. Содержания занятия:
  • 3.5.2. Дополнительная литература2
  • Митохондрии

    Митохондрии - это структуры палочковидной или овальной формы (греч. mitos - нить, chondros - гранула). Они обнаружены во всех животных клетках (исключая зрелые эритроциты): у высших растений, у водорослей и простейших. Отсутствуют они только у прокариот бактерий.

    Эти органеллы впервые были обнаружены и описаны в конце прошлого столетия Альтманом. Несколько позже эти структуры были названы митохондриями. В 1948 г. Хогебум указал на значение митохондрий как центра клеточного дыхания, а в 1949 г. Кеннеди и Ленинджер установили, что в митохондриях протекает цикл окислительного фосфорилирования. Так было доказано, что митохондрии служат местом генерирования энергии.

    Митохондрии видны в обычном световом микроскопе при специальных методах окраски. В фазово - контрастном микроскопе и в «темном поле» их можно наблюдать в живых клетках.

    Строение, размеры, форма митохондрий очень вариабельны. Это зависит в первую очередь от функционального состояния клеток. Например, установлено, что в мотонейронах мух, летающих непрерывно 2 часа, проявляется огромное количество шаровидных митохондрий, а у мух со склеенными крыльями число митохондрий значительно меньше и они имеют палочковидную форму (Л. Б. Левинсон). По форме они могут быть нитевидными, палочковидными, округлыми и гантелеобразными даже в пределах одной клетки.

    Митохондрии локализованы в клетке, как правило, либо в тех участках, где расходуется энергия, либо около скоплений субстрата (например, липидных капель), если таковые имеются.

    Строгая ориентация митохондрий обнаруживается вдоль жгутиков сперматозоидов, в поперечно-полосатой мышечной ткани, где они располагаются вдоль миофибрилл, в эпителии почечных канальцев локализуются во впячиваниях базальной мембраны и т.д.

    Количество митохондрий в клетках имеет органные особенности, например, в клетках печени крыс содержится от 100 до 2500 митохондрий, а в клетках собирательных канальцев почки - 300, в сперматозоидах различных видов животных от 20 до 72, у гигантской амебы Chaos chaos их число достигает 500 000. Размеры митохондрий колеблются от 1 до 10 мкм.

    Ультрамикроскопическое строение митохондрий однотипно, независимо от их формы и размера. Они покрыты двумя липопротеидными мембранами: наружной и внутренней. Между ними располагается межмембранное пространство.

    Впячивания внутренней мембраны, которые вдаются в тело митохондрий, называются кристами . Расположение крист в митохондриях может быть поперечным и продольным. По форме кристы могут быть простыми и разветвленными. Иногда они образует сложную сеть. В некоторых клетках, например, в клетках клубочковой зоны надпочечника кристы имеют вид трубочек. Количество крист прямо пропорционально интенсивности окислительных процессов, протекающих в митохондриях. Например, в митохондриях кардиомиоцитов их в несколько раз больше, чем в митохондриях гепацитов. Пространство, ограниченное внутренней мембраной, составляет внутреннюю камеру митохондрий. В нем между кристами находится митохондриальный матрикс - относительно электронно плотное вещество.

    Белки внутренней мембраны синтезируются миторибосомами, а белки внешней мембраны - циторибосомами.

    "Наружная мембрана митохондрий по многим показателям сходна с мембранами ЭПС. Она бедна окислительными ферментами. Немного их и в мембранном пространстве. Зато внутренняя мембрана и митохондриальный матрикс буквально насыщены ими. Так, в матриксе митохондрий сосредоточены ферменты цикла Кребса и окисления жирных кислот. Во внутренней мембране локализована цепь переноса электронов, ферменты фосфорилирования (образования АТФ из АДФ), многочисленные транспортные системы.

    Кроме белка и липидов, в состав мембран митохондрий входит РНК, ДНК, последняя обладает генетической специфичностью, и по своим физико-химическим свойствам отличается от ядерной ДНК.

    При электронно-микроскопических исследованиях обнаружено, что поверхность наружной мембраны покрыта мелкими шаровидными элементарными частицами. Внутренняя мембрана и кристы содержат подобные элементарные частицы на «ножках», так называемые грибовидные тельца. Они -состоят из трех частей: головки сферической формы (диаметр 90-100 А°), ножки цилиндрической формы, длиной 5 нм и шириной 3-4 нм, основания, имеющего размеры 4 на 11 нм. Головки грибовидных телец связаны с фосфорилированием, затем обнаружено, что головки содержат фермент, обладающий АТФ-идной активностью.

    В межмембранном пространстве находится вещество, обладающее более низкой электронной плотностью, чем матрикс. Оно обеспечивает сообщение между мембранами и поставляет для ферментов, находящихся в обеих мембранах, вспомогательные катализаторы-коферменты.

    В настоящее время известно, что наружная мембрана митохондрий хорошо проницаема для веществ, имеющих низкий молекулярный вес, в частности, белковых соединений. Внутренняя мембрана митохондрий обладает избирательной проницаемостью. Она практически непроницаема для анионов (Cl -1 , Br -1 , SO 4 -2 , HCO 3 -1 , катионов Sn +2 , Mg +2 , ряда cахаров и большинства аминокислот, тогда как Са 2+ , Мп 2+ , фосфат, многокарбоновые кислоты легко проникают через нее. Имеются данные о наличии во внутренней мембране нескольких переносчиков, специфических к отдельным группам проникающих анионов и катионов. Активный транспорт веществ через мембраны осуществляется благодаря использованию энергии АТФ-азной системы или электрического потенциала, генерируемого на мембране в результате работы дыхательной цепи. Даже АТФ, синтезированная в митохондриях, может выйти с помощью переносчика (сопряженный транспорт).

    Матрикс митохондрий представлен мелкозернистым электронно-плотным веществом. В нем располагаются миторибосомы, фибриллярные структуры, состоящие из молекул ДНК и гранул, имеющих диаметр более 200А ◦ образованные солями: Ca 3 (PO 4) , Ba 3 (PO 4) 2 , Mg 3 (PO 4) . Полагают, что гранулы служат резервуаром ионов Са +2 и Мg +2 . Их количество увеличивается при изменении проницаемости митохондриальных мембран.

    Присутствие в митохондриях ДНК обеспечивает участие митохондрий в синтезе РНК и специфических белков, а также указывает на существование цитоплазматической наследственности. Каждая митохондрия содержит в зависимости от размера одну или несколько молекул ДНК (от 2 до 10). Молекулярный вес митохондриальной ДНК около (30-40)*10 6 у простейших, дрожжей, грибов. У высших животных около (9–10) *10 6.

    Длина ее у дрожжей примерно равна 5 мкм, у растений - 30 мкм. Объем генетической информации, заключенный в митохондриальной ДНК, невелик: он состоит из 15-75 тыс. пар оснований, которые могут кодировать в среднем 25-125 белковых цепей с молекулярным весом около 40000.

    Митохондриальная ДНК отличается от ядерной ДНК рядом особенностей: более высокой скоростью синтеза (в 5-7 раз), она более устойчива к действию ДНК-азы, представляет собой двухкольцевую молекулу, содержит больше гуанина и цитозина, денатурируется при более высокой температуре и легче восстанавливается. Однако не все митохондриальные белки синтезируются митохондриальной системой. Так, синтез цитохрома С и других ферментов обеспечивается информацией, содержащейся в ядре. В матриксе митохондрий локализованы, витамины А, В 2 , В 12 , К, Е, а также гликоген.

    Функция митохондрий заключается в образовании энергии, необходимой для жизнедеятельности клеток. Источником энергии в клетке могут служить различные соединения: белки, жиры, углеводы. Однако единственным субстратом, который немедленно включается в энергетические процессы, является глюкоза.

    Биологические процессы, в результате которых в митохондриях образуется энергия, можно подразделить на 3 группы: I группа - окислительные реакции, включающие две фазы: анаэробную (гликолиз) и аэробную. II группа - дефосфорилирование, расщепление АТФ и высвобождение энергии. III группа - фосфорилирование, сопряженное с процессом окисления.

    Процесс окисления глюкозы вначале происходит без участия кислорода (анаэробным или гликолитическим путем) до пировиноградной или молочной кислоты.

    Однако при этом энергии выделяется лишь небольшое количество. В дальнейшем эти кислоты вовлекаются в процессы окисления, которые протекают с участием кислорода, т. е. являются аэробными. В результате процесса окисления пировиноградной и молочной кислоты, названной циклом Кребса, образуется углекислый газ, вода и большое количество энергии.

    Образующаяся энергия не выделяется в виде тепла, что привело бы к перегреванию клеток и гибели всего организма, а аккумулируется в удобной для хранения и транспорта форме в виде аденозинтрифосфорной кислоты (АТФ). Синтез АТФ происходит из АДФ и фосфорной кислоты и вследствие этого называется фосфорилированием .

    В здоровых клетках фосфорилирование сопряжено с окислением. При заболеваниях сопряженность может разобщаться, поэтому субстрат окисляется, а фосфорилирование не происходит, и окисление переходит в тепло, а содержание АТФ в клетках снижается. В результате повышается температура и падает функциональная активность клеток.

    Итак, основная функция митохондрий заключается в выработке практически всей энергии клетки и происходит синтез компонентов, необходимых для деятельности самого органоида, ферментов «дыхательного ансамбля», фосфолипидов и белков.

    Еще одной стороной деятельности митохондрий является их участие в специфических синтезах, например, в синтезе стероидных гормонов и отдельных липидов. В ооцитах разных животных образуются скопления желтка в митохондриях, при этом они утрачивают свою основную систему. Отработавшие митохондрии могут накапливать также продукты экскреции.

    В некоторых случаях (печень, почки) митохондрии способны аккумулировать вредные вещества и яды, попадающие в клетку, изолируя их от основной цитоплазмы и частично блокируя вредное действие этих веществ. Таким образом, митохондрии способны брать на себя функции других органоидов клетки, когда это требуется для полноценного обеспечения того или иного процесса в норме или в экстремальных условиях.

    Биогенез митохондрий. Митохондрии представляют собой обновляющиеся структуры с довольно кратким жизненным циклом (в клетках печени крысы, например, период полужизни митохондрий охватывает около 10 дней). Митохондрии образуются в результате роста и деления предшествующих митохондрий. Деление их может происходить тремя способами: перетяжкой, отпочковыванием небольших участков и возникновением дочерних митохондрий внутри материнской. Делению (репродукции) митохондрий предшествует репродукция собственной генетической системы - митохондриальной ДНК.

    Итак, согласно взглядам большинства исследователей, образование митохондрий происходит преимущественно путем саморепродукции их de novo.

    Внешняя мембрана
    Внутренняя мембрана
    Матрикс м-на, матрикс, кристы . она имеет ровные контуры, не образует впячиваний или складок. На нее приходится около 7% от площади всех клеточных мембран. Ее толщина около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии,
    ее матрикс или митоплазму. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий. Такие впячивания чаще всего имеют вид плоских гребней, или крист. Расстояние между мембранами в кристе составляет около 10-20 нм. Часто кристы могут ветвиться или образовывать пальцевидные отростки, изгибаться и не иметь выраженной ориентации. У простейших, одноклеточных водорослей, в некоторых клетках высших растений и животных выросты внутренней мембраны имеют вид трубок (трубчатые кристы).
    Матрикс митохондрий имеет тонкозернистое гомогенное строение, в нем иногда выявляются тонкие собранные в клубок нити (около 2-3 нм) и гранулы около 15-20нм. Теперь стало известно, что нити матрикса митохондрий представляют собой молекулы ДНК в составе митохондриального нуклеоида, а мелкие гранулы – митохондриальные рибосомы.

    Функции митохондрий

    1. В митохондриях происходит синтез ATP (см. Окислительное фосфорилирование)

    PH межмембранного пространства ~4, pH матрикса ~8 | содержание белков в м: 67% - матрикс, 21% -наруж м-на, 6% - внутр м-на и 6% - в межм-ном пр-ве
    Хандриома – единая система митохондрий
    наружная м-на: порины-поры позволяют проходить до 5 kD | внутренняя м-на: кардиолипин-делает непроницаемой м-ну для ионов |
    межм-ное пр-во: группы ферментов фосфорилируют нуклеотиды и сахара нуклеотидов
    внутренняя м-на:
    матрикс: метаболические ферменты – окисление липидов, окисление углеводов, цикла трикарбоновых к-т, цикла Кребса
    Происхождение от бактерий: амеба Pelomyxa palustris единств из эукариот не содержит м., живет в симбиозе с аэробными бактериями | собственная ДНК | схожие с бактериями оx процессы

    Митохондриальная ДНК

    Деление миохондрий

    реплицируется
    в интерфазе | репликация не связана с S-фазой | во время кл цикла митох один раз делятся надвое, образуя перетяжку, перетяжка сначала на внутр м-не | ~16,5 kb | кольцевая, кодирует 2 рРНК 22 тРНК и 13 белков |
    транспорт белков: сигнальный пептид | амфифильный завиток | митохондриальный распознающий рецептор |
    Окислительное фосфорилирование
    Цепь переноса электронов
    АТР-синтаза
    в кл печени, м живут ~20 дней деление митохондрий путем образования перетяжки

    16569пн=13белков,22тРНК,2pРНК | гладкая внешняя м-на (порины – проницаемость белков до 10 кДа) складчатая внутренняя (кристы) м-на (75% -белков: транспортные белки-переносчики, ф-ты, компаненты дыхат. цепи и АТФ-синтаза, кардиолипин) матрикс (обогащен ф-тами цитратного цикла) межм-ное пр-во

    Включайся в дискуссию
    Читайте также
    Запеканка из курицы с баклажанами
    Крылатые фразы Высказывания крылатые фразы цитаты
     Православный приход храма Успения Божьей Матери г