Подпишись и читай
самые интересные
статьи первым!

Радуга преломление света. Оптические явления: примеры. Свет, мираж, северное сияние, радуга. Метод с использованием стакана воды

Атмосферные оптические явления поражают воображение красотой и многообразием создаваемых иллюзий. Наиболее эффектными являются столбы света, ложные солнца, огненные кресты, глория и брокенский призрак, которые часто люди незнающие принимают за Чудо или Богоявление.

Окологоризонтальная дуга, или "огненная радуга". Свет проходит через кристаллы льда в перистых облаках. Очень редкое явление, так как и кристаллы льда, и солнечный свет должны оказаться под определенным углом друг к другу, чтобы создать эффект "огненной радуги".

"Призрак Броккена". Своё название явление получило по имени вершины Броккен в Германии, где можно регулярно наблюдать этот эффект: человек, стоящий на холме или горе, за спиной которого восходит или заходит солнце, обнаруживает, что его тень, упавшая на облака, становится неправдоподобно огромной. Это происходит из-за того, что мельчайшие капли тумана особым образом преломляют и отражают солнечный свет.

Околозенитная дуга. Дуга с центром в точке зенита, расположенная выше Солнца приблизительно на 46°. Она видна редко и только в течение нескольких минут, имеет яркие цвета, четкие очертания и всегда параллельна горизонту. Стороннему наблюдателю она напомнит улыбку Чеширского Кота или перевернутую радугу.

"Туманная" радуга. Туманный ореол похож на бесцветную радугу. Туман, рождающий этот ореол, состоит из более мелких частиц воды, и свет, преломляясь в крошечных капельках, не расцвечивает его.

Глория. Наблюдать этот эффект можно только на облаках, которые находятся прямо перед зрителем или ниже его, в точке, которая находится на противоположной стороне к источнику света. Таким образом, увидеть Глорию можно только с горы или из самолета, причем источники света (Солнце или Луна) должны находиться прямо за спиной наблюдателя.

Гало в 22º. Белые световые окружности вокруг Солнца или Луны, которые возникают в результате преломления или отражения света находящимися в атмосфере кристаллами льда или снега, называются гало. В холодное время года гало, образованные кристаллами льда и снега на поверхности земли, отражают солнечный свет и рассеивают его в разных направлениях, образуя эффект под названием "бриллиантовая пыль".

Радужные облака. Когда Солнце располагается под определенным углом к капелькам воды, из которых состоит облако, эти капли преломляют солнечный свет и создают необычный эффект "радужного облака", окрашивая его во все цвета радуги.

Лунная радуга (ночная радуга) - радуга, порождаемая луной в большей степени, чем солнцем. Лунная радуга сравнительно более бледная, чем обычная. Это объясняется тем, что луна производит меньше света, чем солнце. Лунная радуга всегда находится на противоположной от луны стороне неба.

Паргелий - одна из форм гало, при которой на небе наблюдается одно или несколько дополнительных изображений Солнца.
В «Слове о полку Игореве» упоминается, что перед наступлением половцев и пленением Игоря «четыре солнца засияли над русской землей». Воины восприняли это как знак надвигающейся большой беды.

Северное (Полярное) сияние - свечение верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.

Огни святого Эльма - разряд в форме светящихся пучков или кисточек, возникающих на острых концах высоких предметов (башни, мачты, одиноко стоящие деревья, острые вершины скал и т. п.) при большой напряжённости электрического поля в атмосфере.

Зодиакальный свет. Рассеянное свечение ночного неба, создаваемого солнечным светом, отраженным от частиц межпланетной пыли, называют еще зодиакальным светом. Зодиакальный свет можно наблюдать вечером на западе или утром на востоке.

Столбы света. Плоские кристаллы льда отражают свет в верхних слоях атмосферы и образуют вертикальные столбы света, словно выходящие из земной поверхности. Источниками света могут являться Луна, Солнце или огни искусственного происхождения.

Звездный след. Невидим невооруженным глазом, его можно запечатлеть на фотокамеру.

Белая радуга. Фото сделано на мосту Золотые Ворота в Сан-Франциско

Свет Будды. Явление схоже с Призраком Броккена. Солнечные лучи отражаются от атмосферных капелек воды над морем и тень самолёта посреди радужного круга...

Зелёный луч. "Когда заходящее Солнце полностью скрывается из виду, последний проблеск выглядит поразительно зеленым. Эффект можно наблюдать только из мест, где горизонт низок и далек. Он продолжается всего несколько секунд."

Мираж, давно всем известное природное явление...

Лунная Радуга - это довольно редкое явление в атмосфере Земли и появляется только при полной Луне. Для возникновения лунной радуги необходимо: полная Луна, не закрытая облаками, и выпадение ливневого дождя. Настоящая лунная радуга имеет размер в половину небосвода.

Тень горы, наблюдаемая на фоне вечерних облаков:

Когда бы радуга ни возникала, она всегда образуется игрой света на каплях воды. Обычно это дождевые капли, изредка - мелкие капли тумана. На самых мелких каплях, таких, из которых состоят облака, радуга не видна.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды , взвешенных в воздухе. Эти капельки по-разному отклоняют свет разных цветов, в результате чего белый свет разлагается в спектр.

В яркую лунную ночь можно увидеть радугу от Луны . Поскольку человеческое зрение устроено так, что при слабом освещении глаз плохо воспринимает цвета, лунная радуга выглядит белесой; чем ярче свет, тем «цветнее» радуга.

По старому английскому поверью, у подножия каждой радуги можно найти горшок с золотом. Еще и теперь встречаются люди, воображающие, что они действительно могут добраться к подножью радуги и что там виден особый мерцающий свет.

Совершенно очевидно, что радуга не находится в каком-либо определенном месте , подобно реальной вещи; она - не что иное, как свет, приходящий по определенному направлению.

Чаще всего наблюдается первичная радуга , при которой свет претерпевает одно внутреннее отражение. Ход лучей показан на рисунке ниже. В первичной радуге красный цвет находится снаружи дуги, её угловой радиус составляет 40-42°.

Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это вторичная радуга , в которой свет отражается в капле два раза. Во вторичной радуге «перевёрнутый» порядок цветов - снаружи находится фиолетовый, а внутри красный. Угловой радиус вторичной радуги 50-53°.

Порядок цветов во второй радуге обратен порядку в первой; они обращены друг к другу красными полосами.

Схема образования радуги

  1. сферическая капля,
  2. внутреннее отражение,
  3. первичая радуга,
  4. преломление,
  5. вторичная радуга,
  6. входящий луч света,
  7. ход лучей при формировании первичной радуги,
  8. ход лучей при формировании вторичной радуги,
  9. наблюдатель,
  10. область формирования радуги,
  11. область формирования радуги.
  12. область формирования радуги.

Центр окружности, которую описывает радуга, всегда лежит на прямой, проходящей через Солнце (Луну) и глаз наблюдателя, то есть одновременно видеть солнце и радугу без использования зеркал невозможно.

Собственно говоря, радуга представляет собой полную окружность. Мы не можем проследить ее за горизонтом только потому, что мы не видим дождевых капель, падающих под нами.

С самолета или возвышенности можно видеть полную окружность.

«Семь цветов радуги» существуют лишь в воображении. Это - риторический оборот, живущий так долго потому, что мы редко видим вещи такими, каковы они в действительности. На самом деле цвета радуги постепенно переходят один в другой, и лишь глаз непроизвольно объединяет их в группы.

Традиция выделять в радуге 7 цветов пошла от Исаака Ньютона , для которого число 7 имело специальное символическое значение (по то ли пифагорейским, то ли богословским соображениям). Традиция выделять в радуге 7 цветов не всемирна, например, у болгар в радуге 6 цветов.

Для запоминания последовательности цветов в радуге есть мнемонические фразы, первые буквы каждого слова в которых соответствуют первым буквам в названиях цветов (Красный, Оранжевый, Желтый, Зеленый, Голубой, Синий, Фиолетовый

"К аждый о хотник ж елает з нать, г де с идит ф азан" . "Как однажды жак-звонарь головой сломал фонарь" .

Представляем Вам подборку из 20ти наиболее красивых природных феноменов, связанных с игрой света. Поистине явления природы неописуемы - это надо видеть! =)

Разделим условно все световые метаморфозы на три подгруппы. Первая - Вода и Лёд, вторая - Лучи и Тени, и третья - Световые контрасты.

Вода и Лёд

“Окологоризонтальная Дуга”

Этот феномен также известен как “огненная радуга”. Создаётся в небе, когда свет преломляется через ледяные кристаллы в перистых облаках. Явление это очень редкое, поскольку и ледяные кристаллы и солнце должны встать точно по горизонтальной линии, чтобы произошло такое эффектное преломление. Этот особенно удачный пример был запечатлён в небе над Spokane в Вашингтоне, в 2006 году


Ещё пара примеров огненной радуги




Когда солнце светит на альпиниста или другой объект сверху - тень проектируется на туман, создавая любопытно увеличенную треугольную форму. Этот эффект сопровождается своеобразным ореолом вокруг объекта - цветными световыми кругами, которые появляются непосредственно напротив солнца, когда солнечный свет отражается облаком одинаковых капелек воды. Название этот природный феномен получил из-за того, что чаще всего наблюдался именно на достаточно доступных для альпинистов невысоких немецких пиках Брокена, вследствие частых туманов в этом районе





В двух словах - это радуга вверх ногами=) Такой себе огромный разноцветный смайл на небе) Получается такое чудо за счёт преломления солнечных лучей через горизонтальные кристаллы льда в облаках определённой формы. Явление сосредоточено в зените, параллельно горизонту, диапазон цвета - от синего в районе зенита и до красного к горизонту. Феномен этот всегда в форме неполной круглой дуги; полный круг в подобной ситуации - исключительно редкая Дуга Пехотинца, которая впервые была запечатлена на плёнке в 2007 году



Туманная Дуга

Этот странный ореол был замечен с моста Золотых Ворот в Сан-Франциско - выглядел он как полностью белая радуга. Как и радуга этот феномен создаётся благодаря преломлению света через капельки воды в облаках, но, в отличие от радуги - из-за небольшого размера капелек тумана цвета как бы не хватает. Поэтому радуга получается бесцветной - просто белой) Моряки часто именуют их как “морские волки” или “туманные дуги”




Радужный ореол

Когда свет как бы рассеивается обратно (смесь отражения, преломления и дифракции) - назад к его источнику, капелькам воды в облаках, тень объекта между облаком и источником может быть разделена на цветные полосы. Glory переводится ещё как неземная красота - достаточно точное название такому прекрасному природному феномену) В некоторых частях Китая этот феномен даже называют Светом Будды - он часто сопровождается Призраком Брокена. На фото красивые цветные полосы эффектно окружают тень самолета напротив облака



Ореолы - одни из самых известных и частых оптических явлений, возникают они под множеством обликов. Наиболее часто встречается именно феномен солнечного ореола, вызванный преломлением света кристаллами льда в перистых облаках на большой высоте, а специфическая форма и ориентация кристаллов могут создать изменение в появлении ореола. Во время очень холодной погоды ореолы, сформированные кристаллами рядом с землей отражают солнечный свет между ними, посылая его в нескольких направлениях сразу - этот эффект известен как “алмазная пыль”




Когда солнце оказывается точно под правильным углом позади облаков - капельки воды в них преломляют свет, создавая интенсивный тянущийся шлейф. Окраска, как и в радуге, вызванная различными длинами световых волн - различные длины волны преломляются в разной степени, изменяя угол преломления и, следовательно, цвета света в нашем восприятии. На этом фото радужность облака сопровождается резко окрашенной радугой


Ещё несколько фотографий этого явления




Сочетание низкой Луны и темного неба часто создает лунные дуги, по существу радуги, произведенные светом луны. Появляясь в противоположном Луне конце неба, они обычно выглядят как полностью белые из-за слабой окраски, однако фотография с длинной выдержкой может захватить истинные цвета, как на этом фото, сделанном в Йосемитском национальном парке, Калифорния.


Ещё несколько фото лунной радуги



Этот феномен возникает как белое кольцо, окружающее небо, всегда на той же высоте над горизонтом, что и Солнце. Обычно удаётся уловить лишь фрагменты целой картины. Миллионы вертикально расположенных ледяных кристаллов отражают солнечные лучи по всему небу, чтобы получилось это красивое явление.


По бокам получающейся сферы часто появляются так называется ложные Солнца, как например на этом фото


Радуги могут принимать множество форм: многожественные дуги, пересекающиеся дуги, красные дуги, одинаковые дуги, дуги с окрашенными краями, темные полосы, “спицы” и многие другие, но объединяет их то, что все они делятся на цвета - красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Помните из детства "запоминалку" расположения цветов в радуге - Каждый Охотник Желает Знать, Где Сидит Фазан?=) Радуги появляются, когда свет преломляется через капли воды в атмосфере, чаще всего во время дождя, но дымка или туман также могут создать подобные эффекты, и намного более редки, чем можно было бы вообразить. Во все времена множество различных культур приписывали радугам множество значений и объяснений, например древние греки верили, что радуги были дорогой к небесам, а ирландцы считали, что в том месте, где заканчивается радуга - лепрекон закопал свой горшок с золотом=)





Больше информации и красивых фото по радуге можно найти

Лучи и Тени

Корона - это тип плазменной атмосферы, которая окружает астрономическое тело. Cамый известный пример такого явления - корона вокруг Солнца во время полного затмения. Оно простирается в космосе на тысячи километров и содержит ионизированное железо, разогретое почти до миллиона градусов Цельсия. Во время затмения его яркий свет окружает затемненное солнце и кажется будто вокруг светила появляется корона из света




Когда затемнённые области или водопроницаемые препятствия, такие как ветви дерева или облака, фильтруют луч солнца - из лучей получаются целые колонны света, исходящие из единственного источника в небе. Явление это, часто используемое в фильмах ужасов, обычно наблюдается на рассвете или закате и может даже быть засвидетельствовано под океаном, если солнечные лучи проходят через полосы сломанного льда. Эта красивая фотография была сделана в Национальном парке Юты


Ещё несколько примеров





Fata Morgana

Взаимодействие между холодным воздухом около уровня земли и теплым воздухом сразу над ним может действовать как преломляющая линза и перевернуть вверх тормашками изображение объектов на горизонте, по которому фактическое изображение, кажется, колеблется. На этом снимке, деланном в Тюрингии, Германия, горизонт на расстоянии, кажется, вообще исчез, хотя синяя часть дороги - просто отражение неба выше горизонта. Утверждение о том, что миражи - полностью несуществующие изображения, которые являются только людям, затерявшимся в пустыне, является некорректным, вероятно перепутанным с эффектами крайнего обезвоживания, которое может вызвать галлюцинации. Миражи всегда основаны на реальных объектах, хотя верно то, что они могут казаться ближе из-за эффекта миража



Отражение света ледяными кристаллами с почти идеально горизонтальными плоскими поверхностями создает сильный луч. Источником света может быть Солнце, Луна или вообще искусственный свет. Интересная особенность заключается в том, что у столба будет цвет этого источника. На этом фото, сделанном в Финляндии, оранжевый солнечный свет на закате создает такой же оранжевый великолепный столб

Ещё парочка “солнечных столбов”)




Световые контрасты

Столкновение заряженных частиц в верхней атмосфере часто создает великолепные световые картины в полярных областях. Цвет зависит от элементного содержания частиц – большинство полярных сияний кажется зеленым или красным из-за кислорода, однако азот иногда создает глубокую синюю или фиолетовую видимость. На фото - известная Аврора Борилис или Северное сияние, названное так в честь римской богини рассвета Авроры и древнегреческого бога северного ветра Борея





А так Северное сияние выглядит из космоса



Конденсационный (инверсионный) след

Следы пара, которые следуют за самолетом через всё небо - это одни из самых ошеломляющих примеров вмешательства человека в атмосферу. Они созданы или выхлопом самолета или воздушными вихрями от крыльев и появляются только в холодных температурах на большой высоте, конденсируясь в ледяные капельки и воду. На этом фото куча инверсионных следов перекрещивает небо, создавая причудливый образец этого неприродного феномена




Высотные ветра искривляют следы ракет, и их маленькие выхлопные частицы преврящают солнечный свет в яркие переливающиеся цвета, которые иногда те же самые ветра переносят на тысячи километров, пока те окончательно не рассеются. На фото - следы ракеты Минотавр, запущенной с базы ВВС США в Ванденберге, Калифорния


Небо, как и многие другие вещи вокруг нас, рассеивает поляризованный свет, имеющий определенную электромагнитную ориентацию. Поляризация всегда перпендикулярна непосредственно световому пути и если в свете присутствует лишь одно направление поляризации - говорят, что свет линейно поляризован. Эта фотография была сделана с поляризованной линзой фильтра широкого угла, чтобы показать, насколько захватывающе выглядит электромагнитный заряд в небе. Обратите внимание, какой оттенок небо имеет около горизонта, и какой - в самом верху


Технически невидимое невооруженным глазом, это явление можно запечатлеть, оставив камеру как минимум на час, а то и на всю ночь с открытым объективом. Естественное вращение Земли заставляет звезды в небе двигаться через горизонт, создавая за собой замечательные следы. Единственная звезда в вечернем небе, которая всегда находится на одном месте - конечно же Полярная, так как она находится фактически на одной оси с Землёй и её колебания заметны только на Северном полюсе. То же самое было бы верно на юге, но нет никакой звезды, достаточно яркой для того, чтобы наблюдать аналогичный эффект





А вот и фото с полюса)


Слабый треугольный свет, замеченный в вечернем небе и простирающийся к небесам, Зодиакальный свет легко скрывается легким загрязнением атмосферы или лунным светом. Феномен этот вызывается отражением солнечного света от частиц пыли в космосе, известных как космическая пыль, следовательно его спектр абсолютно идентичен спектру Солнечной системы. Солнечное излучение заставляет частицы пыли медленно расти, создавая величественное созвездие изящно разбросанных по небу огоньков




Экология

Во многих культурах существуют легенды и мифы о силе радуги, люди посвящают ей произведения искусства, музыки и поэзии.

Психологи утверждают, что люди восхищаются этим природным явлением, потому что радуга является обещанием светлого, "радужного" будущего.

С технической точки зрения радуга возникает, когда свет проходит через капельки воды в атмосфере , и преломление света приводит к привычному всем нам виду изогнутой арки разных цветов.

Вот эти и другие интересные факты о радуге:


7 фактов о радуге (с фото)

1. Радугу редко можно увидеть в полдень

Чаще всего радуга возникает утром и вечером. Чтобы радуга смогла сформироваться, солнечный свет должен попасть в дождевую каплю под углом примерно 42 градуса. Это вряд ли произойдет, когда Солнце находится выше, чем под углом 42 градуса в небе.

2. Радуга появляется и ночью

Радугу можно увидеть и после наступления темноты. Такое явление называют лунной радугой. В этом случае лучи света преломляются при отражении от Луны, а не напрямую от Солнца.

Как правило, она бывает менее яркой, так как чем ярче свет, тем разноцветнее радуга.

3. Два человека не могут видеть одну и ту же радугу

Свет, отраженный от определенных дождевых капель, отражается от других капель с совершенно разного угла для каждого из нас. Это создает и разный образ радуги.

Так как два человека не могут находиться в одном и том же месте, они не могут видеть одну и ту же радугу. Более того, даже каждый наш глаз видит разную радугу.

4. Мы никогда не сможем достичь конца радуги

Когда мы смотрим на радугу, кажется, будто она передвигается вместе с нами. Это происходит потому, что свет, который ее формирует, проделывает это с определенного расстояния и угла для наблюдателя. И это расстояние всегда останется между нами и радугой.

5. Мы не можем видеть все цвета радуги

Многие из нас с детства помнят стишок, который позволяет запомнить 7 классических цветов радуги (Каждый охотник желает знать, где сидит фазан).

Каждый - красный

Охотник - оранжевый

Желает - желтый

Знать - зеленый

Где - голубой

Сидит - синий

Фазан – фиолетовый

Однако на самом деле радуга состоит из более чем миллиона цветов, включая цвета, которые человеческий глаз не может увидеть.

6. Радуга бывает двойной, тройной и даже четверной

Мы можем увидеть больше одной радуги, если свет отражается внутри капли и разделяется на составляющие цвета. Двойная радуга появляется, когда это происходит внутри капли дважды, тройная - когда трижды и так далее.

При четверной радуге, каждый раз, когда отражается луч, свет, а соответственно и радуга становится бледнее и потому последние две радуги видны очень слабо.

Чтобы увидеть такую радугу, нужно чтобы совпало сразу несколько факторов, а именно абсолютно черное облако, и либо равномерное распределение размеров дождевых капель, либо проливной дождь.

7. Вы можете сами заставить радугу исчезнуть

Используя поляризационные солнечные очки можно перестать видеть радугу. Это происходит потому, что они покрыты очень тонким слоем молекул, которые расположены в вертикальные ряды, а свет, отраженный от воды, поляризуется горизонтально. Это явление можно увидеть на видео.


Как сделать радугу?

Вы можете также сделать настоящую радугу в домашних условиях. Существует несколько методов.

1. Метод с использованием стакана воды

Наполните стакан водой и поместите его на стол перед окном в солнечный день.

Поместите листок белой бумаги на пол.

Намочите окно горячей водой.

Регулируйте стакан и бумагу, пока не увидите радугу.

2. Метод с использованием зеркала

Поместите зеркало внутри стакана наполненного водой.

Комната должна быть темной, а стены белые.

Посветите фонариком в воду, двигая его, пока не увидите радугу.

3. Метод с использованием компакт диска

Возьмите компакт- диск, и протрите его, чтобы он не был пыльным.

Положите его на плоскую поверхность, под свет или перед окном.

Смотрите на диск и наслаждайтесь радугой. Можете покрутить диск, чтобы увидеть, как передвигаются цвета.

4. Метод дымки

Используйте шланг для воды в солнечный день.

Закройте пальцем отверстие шланга, создавая дымку

Направьте шланг в сторону Солнца.

Посмотрите на дымку, пока не увидите радугу.

Как средь прозрачных облачных пелен

Над луком лук соцветный и сокружный

Посланницей Юноны вознесен,

И образован внутренним наружный.



Радуга у всех на виду - она обычно наблюдается в виде двух окрашенных дуг (двух соцветных луков, о которых пишет Данте), причем в верхней дуге цвета располагаются в таком порядке сверху вниз: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный, а в нижней дуге наоборот - от красного до фиолетового. Для запоминания их последовательности есть мнемонические фразы, первые буквы каждого слова в которых соответствуют первым буквам названия цвета Например, такой является фраза "Каждый Охотник Желает Знать, Где Сидит Фазан" или другая, не менее известная, "Как Однажды Жан-Звонарь Головою Сшиб Фонарь". Правда, традиция выделять в радуге 7 цветов не всемирна. Например, у болгар в радуге 6 цветов.

Радуга даёт уникальную возможность наблюдать в естественных условиях разложение белого света в спектр.

Радуга обычно появляется после дождя, когда Солнце стоит довольно низко. Где-то между Солнцем и наблюдателем ещё идёт дождь. Солнечный свет, проходя сквозь капли воды, многократно отражается и преломляется в них, как в маленьких призмах, и лучи разного цвета выходят из капель под различными углами. Это явление называется дисперсией (т. е. разложением) света. В результате образуется яркая цветная дуга (а на самом деле крут; целиком его можно увидеть с самолёта).

Иногда наблюдаются сразу две, реже - три разноцветные дуги. Первую радугу создают лучи, отразившиеся внутри капель однократно, вторую - лучи, отразившиеся дважды, и т. д. В 1948 г. в Ленинграде (ныне Санкт-Петербург) среди туч над Невой появилось сразу четыре радуги.

Вид радуги, яркость цветов, ширина полос зависят от размеров и количества водяных капель в воздухе. Яркая радуга бывает летом после грозового дождя, во время которого падают крупные капли. Как правило, такая радуга предвещает хорошую погоду.

В яркую лунную ночь можно увидеть радугу от Луны. Радуга возникает в свете полной луны, когда идет дождь. Поскольку человеческое зрение устроено так, что при слабом освещении наиболее чувствительные рецепторы глаза - "палочки" - не воспринимает цвета, лунная радуга выглядит белесой; чем ярче свет, тем "цветнее" радуга (в её восприятие включаются цветовые рецепторы - "колбочки").

огненная радуга

Ее повезло увидеть жительнице Швеции Мариан Эриксон. Радуга протянулась по ночному небу и стояла при полной луне в течение минуты.

Приметы и легенды.


Когда-то давным-давно человек стал задумываться, почему же на небе появляются радуги. В те времена об оптике даже и не слышали. Потому люди придумывали мифы и легенды, а так же существовало множество примет. Вот некоторые из них:

  • В скандинавской мифологии радуга - это мост Биврёст, соединяющий Мидгард (мир людей) и Асгард (мир богов).
  • В древнеиндийской мифологии - лук Индры, бога грома и молнии.
  • В древнегреческой мифологии - дорога Ириды, посланницы между мирами богов и людей.
  • По славянским поверьям, радуга, подобно змею, пьёт воду из озёр, рек и морей, которая потом проливается дождём.
  • Ирландский лепрекон прячет горшок золота в месте, где радуга коснулась земли.
  • По чувашским поверьям, если пройти сквозь радугу, то можно поменять пол.
  • В Библии радуга появилась после всемирного потопа как символ прощения человечества.
  • Суеверные люди считали, что радуга является плохим предзнаменованием. Они считали, что души умерших переходят в потусторонний мир по радуге, и если появилась радуга, это означает чью-то близкую кончину.

История объяснения радуги.

Уже Аристотель, древнегреческий философ, пытался объяснить причину радуги. А персидский астроном Qutb al-Din al- Shirazi (1236-1311), а возможно, его ученик Kamal al-din al-Farisi (1260-1320), видимо, был первым, кто дал достаточ но точное объяснение феномена.

Общая физическая картина радуги была уже четко описана Марком Антонием де Доминисом (1611).

М.А. де Доминис

На основании опытных наблюдений он пришел к заключению, что радуга получается в результате отражения от внутренней поверхности капли дождя и двукратного преломления - при входе в каплю и при выходе из нее. Рене Декарт дал более полное объяснение радуги в своем труде "Метеоры" в главе "О радуге" (1635).

Рене Декарт

Декарт пишет:

"Во-первых, когда я принял во внимание, что радуга может появляться не только на небе, но также и в воздухе вблизи нас каждый раз, когда в нем находятся капли воды, освещенные солнцем, как это иногда можно видеть в фонтанах, мне легко было заключить, что она зависит от того, каким образом лучи света действуют на эти капли, а от них достигают нашего глаза; далее, зная, что эти капли шарообразны, и видя, что и при больших и при малых каплях радуга появляется всегда одинаковым образом, я поставил себе целью создать очень большую каплю, чтобы иметь возможность лучше ее рассмотреть. Для этого я наполнил водой большой стеклянный сосуд, вполне круглый и вполне прозрачный и пришел к следующему выводу..."

Этот вывод повторяет и уточняет результат, полученный Доминисом. В частности, Декарт обнаружил, что вторая (внешняя) радуга возникает в результате двух преломлений и двух отражений. Он также качественно объяснил появление цветов радуги, сравнивая преломление света в капле с преломлением в стеклянной призме. Рисунок 1, поясняющий ход луч ей в капле, взят из упомянутой выше работы Декарта. Но главная заслуга Декарта заключалась в том, что он колич ественно объяснил это явление, впервые используя закон преломления света:

"Я еще не знал, почему цвета появляются лишь под известными углами, пока не взял перо и не вычислил подробно хода всех лучей, которые падают на различные точ ки водяной капли, чтобы узнать, под какими углами они могут попасть в наш глаз после двух преломлений и одного или двух отражений. Тогда я нашел, что после одного отражения и двух преломлений гораздо больше лучей, которые могут быть видны под углом от 41° до 42° (по отношению к солнечному лучу), чем таких, которые видны под каким-либо меньшим углом, и нет ни одного, который был бы виден под большим. Далее я нашел также, что после двух отражений и двух преломлений оказывается гораздо больше лучей, падающих в глаз под углом от 51° до 52°, чем таких, которые бы падали под каким-либо большим углом, и нет совсем таких, которые падали бы под меньшим".

Таким образом, Декарт не только вычисляет ход лучей, но и определяет угловое распределение интенсивности рассеянного каплями света.

В отношении цветов теория дополнена Исааком Ньютоном.

Исаак Ньютон

Хотя многоцветный спектр радуги непрерывен, по традиции в нем выделяют 7 цветов. Считают, что первым выбрал число 7 Исаак Ньютон, для которого число 7 имело специальное символическое значение (по пифагорейским, богословским или умерологическим соображениям).

В известных "Лекциях по оптике", которые были написаны в 70-х годах XVI века, но опубликованы уже после смерти Ньютона в 1729 году, приведено следующее резюме:
"Из лучей, входящих в шар, некоторые выходят из него после одного отражения, другие - после двух отражений; есть лучи, выходящие после трех отражений и даже большего числа отражений. Поскольку дождевые капли очень малы относительно расстояния до глаза наблюдателя, то не стоит совсем рассматривать их размеры, а только углы, образуемые падающими лучами с выходящими. Там, где эти углы наибольшие или наименьшие, выходящие лучи наиболее сгущены. Так как различные роды лучей (лучи разных цветов) составляют различные наибольшие и наименьшие углы, то лучи, наиболее плотно собирающиеся у различных мест, имеют стремление к проявлению собственных цветов".

Утверждение Ньютона о возможности не учитывать размеры капли, так же как слова Декарта о том, что при больших и малых каплях радуга появляется всегда одинаковым образом, оказалось неточным. Полная теория радуги с учетом дифракции света, которая зависит от соотношения длины волны света и размера капли, была построена лишь в XIX веке Дж.Б. Эри (1836) и Дж.М. Пернтером (1897).

Преломление и отражение луча в капле воды.

Рисунок Декарта, который мы воспроизвели как реликвию, обладает одним "методическим" несовершенством. Неподготовленному читателю может показаться, что обе радуги, внешняя и внутренняя, обусловлены разными способами отражения в одной и той же капле. Лучше было бы изобразить две капли: одну, относящуюся к нижней радуге, другую к верхней, оставив в каждой по одному способу отражения, как это показано на рис. 2. Для простоты восприятия в обоих случаях направление падающего на каплю солнечного луча принято за ось абсцисс. Координату y, характеризующую точку падения луча на каплю, будем называть прицельным параметром.

Из рис. 2, а видно, что падающий луч с одним отражением может быть воспринят наблюдателем, если только точка падения относится к верхней части капли (y > 0). Наоборот, при двух отражениях это окажется возможным для тех лучей, которые падают на нижнюю часть капли (y < 0).

Предположим сначала, что капля находится в вертикальной плоскости, проходящей через положение Солнца и глаз наблюдателя. Тогда падающий, преломленные и отраженные лучи лежат в этой же плоскости. Если α 1 - угол падения, а α 2 - угол преломления, то из рис. 2, а и б угол вышедшего луча по отношению к падающему в первом случае будет равен φ 1 = 4α 2 -2α 1 (1)
а во втором - φ 2 = π - 6α 2 + 2α 1 (2)
причем, согласно закону преломления: sin α 2 = sin α 1 /n
где n в нашем случае показатель преломления воды. Кроме того, принимая условно радиус капли за единицу длины, имеем:

Соответственно в первом и во втором случаях. Поэтому из (1) и (2) получаем
φ 1 =4 arcsin(y/n) - 2 arcsin y, y>0 (3)
φ 2 = π+6 arcsin(y/n) - 2 arcsin y, y<0 (4)

Эти два уравнения являются основными для дальнейшего рассмотрения. Нетрудно построить графики углов φ 1 и φ 2 как функций y. Они представлены на рис. 3 для показателя преломления n=1,331 (красный цвет). Мы видим, что при значении прицельного параметра y≈0,85 достигается максимум угла φ 1 , приблизительно равный 42°, а угол имеет минимум ~53° при y≈-0,95. Покажем, что этим экстремальным точкам соответствует максимум интенсивности отраженного каплей света.

Рассмотрим некоторый малый интервал изменения прицельного параметра (для определенности в первом случае) y, y + Δy. С помощью графика можно найти изменение угла φ на этом интервале Δφ. На рис. 3 видно, что Δφ=Δy*tg β, где β - угол, который касательная к графику в данной точке образует с осью абсцисс. Величина Δy пропорциональна интенсивности света ΔI, падающего на каплю в этом интервале прицельного параметра. Эта же интенсивность света (точнее, пропорциональная ей величина) рассеивается каплей в угловом интервале Δφ. Мы можем написать ΔI ~ Δy =Δy*ctg β. Следовательно, интенсивность рассеянного каплей света, приходящаяся на единицу угла рассеяния, может быть выражена как I(φ) = ΔI/Δφ ~ ctg β (5)

Так как в экстремальных точках ctg β = ∞, то величина (5) обращается в бесконечность. Отметим, что положения этих экстремальных точек для различных цветов несколько отличаются, что и позволяет наблюдать радугу.

Как нарисовать радугу

Теперь мы можем нарисовать схему наблюдения радуги. Такое построение выполнено на рис. 4. Сначала рисуем поверхность Земли и стоящего на ней наблюдателя. Перед наблюдателем находится завеса дождя (закрашенная серым цветом). Затем изображаем солнечные лучи, направление которых зависит от высоты Солнца над горизонтом. Через глаз наблюдателя проводим красные и фиолетовые лучи под указанными выше углами по отношению к солнечным лучам. Можно быть уверенным на основании результатов предыдущего раздела, что эти лучи возникнут в результате рассеяния на соответствующих каплях дождя. При этом, как следует из рис. 2, нижняя радуга обусловлена процессами рассеяния с одним отражением, а верхняя - с двумя отражениями. Обратите внимание на чередование цветов: фиолетовые лучи являются внешними, а красные - внутренними. Очевидно, что лучи других цветов в каждой радуге размещаются между красным и фиолетовым в соответствии со значениями показателей преломления.

Напомним, что мы пока рассматривали изображение радуги в вертикальной плоскости, проходящей через глаз наблюдателя и положение Солнца. Проведем прямую, проходящую через глаз наблюдателя параллельно солнечному лучу. Если вертикальную плоскость поворачивать вокруг указанной прямой, то ее новое положение для наблюдения радуги будет совершенно эквивалентно исходному. Поэтому радуга имеет форму дуги окружности, центр которой находится на построенной оси. Радиус этой окружности (как видно на рис. 4) приблизительно равен расстоянию наблюдателя до завесы дождя.

Отметим, что при наблюдении радуги Солнце не должно стоять слишком высоко над горизонтом - не более чем на 53,48°. Иначе картина лучей на рисунке будет поворачиваться по часовой стрелке, так что даже фиолетовый луч верхней радуги не сможет попасть в глаз наблюдателя, стоящего на Земле. Правда, это окажется возможным, если наблюдатель поднимется на некоторую высоту, например на самолете. Если наблюдатель поднимется достаточно высоко, то он сможет увидеть радугу и в форме полной окружности.

Схема образования радуги

Схема образования радуги
1) сферическая капля 2) внутреннее отражение 3) первичная радуга
4) преломление 5) вторичная радуга 6) входящий луч света
7) ход лучей при формировании первичной радуги

8) ход лучей при формировании вторичной радуги
9) наблюдатель 10) область формирования первичной радуги
11) область формирования вторичной радуги 12) облако капелек

Данное описание радуги следует уточнить c учетом того, что солнечные лучи не строго параллельны. Это связано с тем, что лучи, падающие на каплю от разных точек Солнца, имеют несколько различные направления. Максимальное угловое расхождение лучей определяется угловым диаметром Солнца, как известно равным приблизительно 0,5°. К чему это приводит? Каждая капля испускает в глаз наблюдателя не столь монохроматический свет, как это было бы в случае строгой параллельности падающих лучей. Если бы угловой диаметр Солнца заметно превосходил угловое расстояние между фиолетовым и красным лучами, то цвета радуги были бы неразличимы. К счастью, это не так, хотя, несомненно, перекрывание лучей с разными длинами волн влияет на контрастность цветов радуги. Интересно, что конечность углового диаметра Солнца была уже учтена в работе Декарта.

Включайся в дискуссию
Читайте также
Простые рецепты варенья из черники на зиму
Некоторые общие методические рекомендации к решению задач по генетике
Конкурсные работы по номинациям